
Boundary states for a free boson defined on finite geometries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 845

(http://iopscience.iop.org/0305-4470/34/4/311)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 845–859 www.iop.org/Journals/ja PII: S0305-4470(01)15484-3

Boundary states for a free boson defined on finite
geometries
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Abstract
Langlands recently constructed a map ϕ → |x(ϕ)〉 that factorizes the partition
function of a free boson on a cylinder with boundary condition given by two
arbitrary functions ϕB1 and ϕB2 in the form 〈x(ϕB1)|qL0+L̄0 |x(ϕB2)〉. We rewrite
|x(ϕ)〉 in a compact form, getting rid of technical assumptions necessary in his
construction. We show that this vector transforms properly under conformal
transformations that preserve both the boundary and the reality conditions on
the field ϕ. The vector |x(ϕ)〉 turns out to be the boundary state introduced by
string theorists to compute corrections to closed-string amplitudes in non-trivial
backgrounds. Dirichlet and Neumann states are written as a superposition of
these boundary states.

PACS numbers: 1125H, 0530J, 1130

1. Introduction

Renormalization transformations are often defined on spaces of fields or parameters of
statistical physics models. It is assumed that the existence of a non-trivial fixed point of
these transformations requires that the space it acts on be infinite dimensional. Or at least
that the physical relevance of such fixed points stems from the infinite number of degrees of
freedom. Langlands [1] introduced a family of finite models inspired by percolation, each
endowed with a renormalization transformation with a non-trivial fixed point. Numerical
analysis shows that, already for the coarsest models in the family, the critical exponents bear
some similarities with those accepted in the literature for percolation.

The calculation presented here is a step towards extending Langlands’ construction for
percolation to other models with interaction. In [2] Langlands calculated the partition function
of the free boson on a cylinder with fixed boundary conditions. This partition function may
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be interpreted as the probability of measuring given restrictions of the boson at the cylinder
extremities. Langlands argued that the space of such probability distributions might be a natural
set upon which to construct a renormalization transformation. He showed how to construct
vectors |xB〉 in the Fock space that represent the restriction at a given extremity B in such a way
that the partition function is simply the expectation value of the evolution operator between
the two boundary states:

Z(ϕ|B1 , ϕ|B2) = 〈xB1 |qL0⊕L̄0 |xB2〉. (1)

(The notation will be clarified in the following.) This is nothing but the Feynman–Kac formula.
The present paper goes back to this formula to make Langlands’ expression for the state |xB〉
more explicit. We should underline that it is a rather unusual use of the Feynman–Kac formula.
While most of its applications involve the computation of a partition function from the evolution
operator and boundary conditions, we use it as a tool to define boundary states in a chosen
algebraic structure.

The answer for |xB〉 is not new and can be found in various forms in the string theory
literature (see, for instance, [10–12]). Let us review quickly how it appeared there. Early
on came the necessity to compute open-string corrections to closed-string tree amplitudes in
the presence of non-vanishing spacetime backgrounds of open-string fields. These corrections
amount to gluing a cylinder to the tree-level process. The new boundary represents the creation
out of the vacuum of some closed-string state, the cylinder is the propagation of that state from
the boundary to the original process and its length is kept free to account for all moduli of the
new worldsheet. A first step in this calculation is therefore to characterize the boundary state of
this cylinder. In the absence of open-string backgrounds, this state must satisfy free boundary
conditions: ∂+x

µ = −∂−xµ, where xµ, µ = 1, . . . , D is the (first quantization) field associated
with the spacetime coordinates of the string. In terms of creation and annihilation operators,
these conditions require that the boundary state should be a (zero-eigenvalue) eigenstate of
(a

µ
n − ā

µ
−n). The bar distinguishes the right- from the left-moving sector. If open-string

backgrounds are to be included, it is natural to construct a coherent state set in which each
vector is a simultaneous eigenstate of (a

µ
n − ā

µ
−n) with eigenvalues x

µ
n , for µ = 1, . . . , D

and n ∈ N. It is by solving this infinite set of linear equations that string theorists arrived
at the expression for the boundary states. Our path is quite different; out starting point is
the partition function of a free boson with fixed boundary conditions that, in string theory,
would be interpreted as the scattering amplitude between two classical states. Then we use
the Feynman–Kac formula to find the boundary state.

Two comments could help distinguish our result from recent works in conformal field
theory and quantum integrability. First, the boundary states computed here are not conformally
invariant. Conformal boundary states were introduced and described for minimal models by
Cardy [3]. Even though some particular conformal states (e.g. Dirichlet and Neumann states,
see section 6) can be easily constructed out of them, the states |xB(ϕ)〉 are not conformal in
general. (They do have a natural transformation law under conformal maps. See section 5.)
Second, the boundary states |xB〉 are neither dynamical nor chosen to preserve an integrability
property, like the S-matrix factorization, nor are such amplitudes between them expressible
as a sum of Virasoro character with non-negative integer coefficients. As will be seen in
section 3, the action integrated to obtain the partition function does not contain a boundary
term. The results reported here are therefore not connected a priori to the body of work on
quantum integrability of models on domains with boundary even though |x(ϕ)〉, for a specific
ϕ, could lead to an integrable model. (The literature here is extensive; papers often referred
to as seminal in this context are those of Ghoshal and Zamolodchikov [13] and of Callan and
Klebanov [14].)
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Our goal here is therefore to obtain the expression for the boundary states |xB〉 in a novel
way. We hope that the techniques described here can be extended to other models, e.g. the
minimal ones. The paper is organized as follows. The notation is introduced in section 2. The
computation of the partition function with boundary conditions is performed in the section 3.
Sections 4 and 5 give a compact expression for |xB〉 and show that it transforms properly
under conformal transformations that preserve the boundary and the reality of the boson field.
Section 6 expresses the (conformally invariant) Dirichlet and Neumann boundary states in
terms of superpositions of |xB〉.

2. Notation

The description of free bosons is based on the Heisenberg algebra and its representations. The
generators are the creation (a−k, k > 0), annihilation (ak, k > 0) and central (a0) operators,
obeying the commutation rule

[an, am] = nδn+m,0. (2)

The Fock space Fα is a highest-weight representation. The action of the generators on the
highest-weight vector |α〉 is given by

ak|α〉 = 0 ∀k > 0 (3)

a0|α〉 = α|α〉 (4)

and physical states are generated by polynomials in a−k, k > 0. A basis for Fα is given by
the vectors

|α; n1, n2, . . .〉 = an1
−1a

n2
−2 · · · |α〉 (5)

where the non-negative integers ni are all zero except for finitely many. The inner product on
Fα is defined by

〈α′; n′
1, n

′
2, . . . |α; n1, n2, . . .〉 = 〈α′| · · · an′

3
3 a

n′
2

2 a
n′

1
1 an1

−1a
n2
−2a

n3
−3 · · · |α〉

= δα,α′

( ∞∏
k=1

knk nk! δnk,n
′
k

)
. (6)

The elements (5) can thus be easily normalized to form an orthonormal basis.
The Hilbert space of the free boson is the direct sum of tensor products of the form Fα⊗Fᾱ ,

Fα and Fᾱ characterizing modes in the holomorphic and antiholomorphic sectors, respectively.
States in these tensor products are generated by the action of polynomials in a−k and ā−k on
the highest-weight vector |α; ᾱ〉 = |α〉⊗|ᾱ〉. The generators ak are understood to act as ak ⊗1
and the āk as 1 ⊗ ak .

Fock spaces are given by the structure of a Virasoro module by defining the conformal
generators

Ln = 1
2

∑
m∈Z

: an−mam : n �= 0

L0 =
∑
n>0

a−nan + 1
2a2

0.

(7)

The expression for L0 implies that Fα is a highest-weight module with highest weight α2/2.
As will be described in the next section, the boson field is to be compactified on a circle of
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radius R. The pairs (α, ᾱ) are then restricted to take the values

α = αu,v =
( u

2R
+ vR

)
→ hu,v = 1

2

( u

2R
+ vR

)2
(8)

ᾱ = ᾱu,v = αu,−v → h̄u,v = 1

2

( u

2R
− vR

)2
(9)

with u and v integers and where hu,v and h̄u,v are the values of L0 = L0 ⊗ 1 and L̄0 = 1 ⊗L0

acting on Fαu,v
⊗ Fᾱu,v

. We will denote Fαu,v
by F(u,v) and Fᾱu,v

by F̄(u,v).
In his calculation, Langlands chose the Virasoro algebra Vir as the fundamental structure.

He was able to construct explicitly the map x for irreducible Verma modules over Vir. However,
at c = 1, Verma modules over Vir are reducible whenever huv is equal to m2/4 for some m ∈ Z

[16]. (For example, this always happens for some integers u and v whenever
√

2R is a rational
number. Of course, when u = v = 0, it is reducible for any compactification radius R.) It
was his suggestion that we look for an alternative definition that would encompass reducible
cases. Using the Heisenberg algebra as the basic structure avoids this difficulty and also leads
to an elegant form for x.

3. Explicit calculation of the partition function

We identify the cylinder with the quotient of the infinite strip ln q < Re w < 0, 0 < q < 1,
by the translations w → w + 2π ik, k ∈ Z. It can be mapped on the annulus A of centre 0,
outer radius 1 and inner radius q by the conformal map z = ew. The angle θ of the annular
geometry parametrizes both extremities of the cylinder.

The partition function is defined as∫
Dϕe− ∫

A L(ϕ) d2z (10)

where
∫

A denotes the integration over the annulus, and the Lagrangian density is given by

L(ϕ) = ∂zϕ∂z̄ϕ. (11)

The usual mode expansion of ϕ(z, z̄) is

ϕ(z, z̄) = ϕ0 + a ln z + b ln z̄ +
∑
n�=0

(
ϕnz

n + ϕ̄nz̄
n
)
.

The restriction ϕB1 of this field to the inner circle where z = qeiθ and z̄ = qe−iθ is of the form

ϕB1(θ) = ϕ0 + (a + b) ln q + iθ(a − b) +
∑
k �=0

bkeikθ b−k = b̄k

and the restriction ϕB2 to the outer circle (z = eiθ , z̄ = e−iθ ):

ϕB2(θ) = ϕ0 + iθ(a − b) +
∑
k �=0

akeikθ a−k = āk.

(The relationship between ak, bk and ϕn will be given below.) Since it is the field eiϕ/R

that really matters, ϕ need not be periodic but should only satisfy the milder requirement
ϕ(e2π iz, e−2π iz̄) = ϕ(z, z̄)+2πvR, v ∈ Z. This statement is equivalent to the compactification
of the field ϕ on a circle of radius R and implies that

a − b = −ivR v ∈ Z.
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The Lagrangian density does not depend on ϕ0 and this constant may be set to zero. Therefore,
only the difference of the constant terms in ϕB1 and ϕB2 remains. We choose to parametrize
this difference by a real number x ∈ [0, 2πR) and an integer m ∈ Z:

−(a + b) ln q = x + 2πmR.

The reason for this parametrization is again the compactification of ϕ: even though the various
pairs (ϕB1 + 2πmR, ϕB2), m ∈ Z, will give different contributions to the functional integral,
they all represent the same restriction of eiϕ/R at the boundary.

We are interested in computing the partition function Z(ϕB1 , ϕB2) = Z(x, {bk}, {ak})
defined as

Z(x, {bk}, {ak}) =
∫
B

Dϕe− ∫
A L(ϕ) d2z (12)

where
∫
B

denotes the integration on the space of functions ϕ such that the restrictions of eiϕ/R

at the inner and outer boundaries coincide with eiϕB1 /R and eiϕB2 /R . (The dependence on the
compactification radius R is always implicit.) The decomposition of the field in a classical
part verifying the boundary conditions and fluctuations vanishing at the extremities leads to

Z(x, {bk}, {ak}) = #−1/2Zclass(x, {bk}, {ak}). (13)

The factor # is the ζ -regularization of the determinant for the annulus and is known to be (see,
for example, [2, 4]):

#−1/2 = (−iτ)−1/2η−1(τ ) with q = eiπτ (14)

where η(τ) = eiπτ/12 ∏∞
m=1(1 − e2imπτ ) is the Dedekind η function. The factor Zclass is the

integration (sum) over all classical solutions compatible with the boundary conditions in the
above sense. To obtain Zclass we solve the classical equations (∂z∂z̄ϕ = 0) with boundary
conditions given by (ϕB1 , ϕB2). The condition at the outer circle (z = eiθ , z̄ = e−iθ ) is
ϕn + ϕ̄−n = an and that at the inner one (z = qeiθ , z̄ = qe−iθ ) is qnϕn + q−nϕ̄−n = bn. The
solution can be written as the sum

ϕ = a ln z + b ln z̄ + ϕ̃1 + ϕ̃2 (15)

where the two function ϕ̃1 and ϕ̃2 are harmonic inside the annulus and take, respectively, the
values ϕB1 and 0 on the inner boundary and the values 0 and ϕB2 on the outer one. These
functions are

ϕ̃1(z, z̄) =
∑
k �=0

bk

qk − 1/qk
(zk − z̄−k)

ϕ̃2(z, z̄) =
∑
k �=0

ak

1/qk − qk

((
z

q

)k

−
(
z̄

q

)−k)
.

Hence the classical solution ϕ is completely determined by the data (x, {bk}, {ak}) up to the
two integers m, v ∈ Z that determine a and b. The factor Zclass is consequently the sum∑

m,v∈Z

e− ∫
A L(ϕ) d2z

where ϕ(m,v) is the solution (15) with −(a + b) ln q = x + 2πmR and a − b = −ivR.
Using this expression and the Poisson summation formula on the index m, Langlands [2]

computed the desired partition function as the product

Z(x, {bk}, {ak}) = #−1/2Z1(x)Z2({bk}, {ak}) (16)
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where

Z1(x) =
∑
u,v∈Z

eiux/Rqu2/4R2+v2R2 =
∑
u,v∈Z

eix(αu,v+ᾱu,v) qhu,v+h̄u,v (17)

and

Z2({bk}, {ak}) =
∞∏
k=1

exp

(
−2k

(
1 + q2k

1 − q2k
(aka−k + bkb−k) − 2qk

1 − q2k
(akb−k + bka−k)

))
.

(18)

4. Explicit form of the boundary states

In this section we rewrite (16) as a sum over u, v ∈ Z of terms of the form

Z(u,v)(x, {bk}, {ak}) = 〈x(u,v)(ϕB1)|qL0+L̄0 |x(u,v)(ϕB2)〉 (19)

with |x(u,v)(ϕ)〉 ∈ F(u,v) ⊗ F̄(u,v) and where

Z(u,v)(x, {bk}, {ak}) = #−1/2eiux/Rqu2/4R2+v2R2
Z2({bk}, {ak}).

The goal is therefore to find a map x(u,v) such that (19) holds. To do so we will first set
Z2({bk}, {ak}) in the form

Z2({bk}, {ak}) =
∞∏
k=1

∑
m,n

Bk
m,nq

k(m+n)Ak
m,n (20)

where Ak
m,n = Ak

m,n(ak, a−k) and Bk
m,n = Bk

m,n(bk, b−k) are functions of only two variables.

With Q = qk , a± = 2i
√
ka±k and b± = −2i

√
kb±k for k � 1, the terms #−1/2Z2 of (16) are

a product over k of

ea+a−/2eb+b−/2 e(a+a−Q2+a+b−Q+b+a−Q+b+b−Q2)/(1−Q2)

1 − Q2
(21)

up to a constant depending only on τ . The factors in front are clearly factorizable and can be
absorbed in the definition of Ak

m,n and Bk
n,m. The remaining mixed term can be developed as

a power series in Q:

∞∑
i,j,k,l=0

(a+a− + b+b−)i

i!

(a+b−)j (b+a−)k

j !k!

(i + j + k + l)!

(i + j + k)!l!
Q2i+j+k+2l . (22)

To achieve the form (20), the coefficient of the termqk(m+n) (i.e. ofQ2i+j+k+2l with 2i+j+k+2l =
m + n) in the above expression has to be the product of two functions, one of (ak, a−k), the
other of (bk, b−k). We concentrate on the terms with j � k and denote by Sm,n the factor of
(a+b−)m−nQm+n with j − k = m − n. The terms with j < k are treated similarly. With the
use of x = a+a− and y = b+b−, Sm,n can be written as

Sm,n(x, y) =
∑

i+k+l=n

(x + y)i(xy)k

i!(m − n + k)!k!

(m + k)!

(m − n + i + 2k)!l!
.

This function is clearly symmetric in x and y. Define

Rm,n(x) ≡ Sm,n(x, 0)
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and

Tm,n ≡ Rm,n(0) = Sm,n(0, 0).

Casting (22) in the form (20) will only be possible if

Sm,n(x, y)Tm,n = Rm,n(x)Rm,n(y). (23)

That this condition is verified is highly non-trivial. It was found in [2] that it is, although in
disguised form, the Saalschütz identity [8]. We thus have the factorization if we define

Ak
m,n(ak, a−k) = Rm,n(x)√

Tm,n

am−n
+ ea+a−/2 if m � n (24)

where

Rm,n =
n∑

i=0

m!xi

i!(m − n)!(m − n + i)!(n − i)!
m � n

and

Tm,n = m!

n!((m − n)!)2
m � n.

This expression for Rm,n shows that it is related to the nth Laguerre polynomial of the (m−n)th
kind by

Rm,n(x) = L(m−n)
n (−x)

(m − n)!
m � n. (25)

A similar calculation leads to

Rm,n(x) = L(n−m)
m (−x)

(n − m)!
n � m. (26)

Going back to the initial notation, we finally obtain the desired form with

Ak
m,n(ak, a−k) =




(2i
√
kak)

m−n

√
n!

m!
e−2k|ak |2L(m−n)

n (4k|ak|2) m � n

(2i
√
ka−k)

n−m

√
m!

n!
e−2k|ak |2L(n−m)

m (4k|ak|2) n � m

(27)

and Bk
m,n(bk, b−k) = Ak

m,n(b−k, bk). (An orientation on the boundary must be chosen to define
the map x. For example, moving in the positive direction of the parameter θ should put the
cylinder at one’s left. This explains the interchange bk ↔ b−k in the functions B.)

It is now straightforward to define the map from the boundary conditions to the Hilbert
space. We have just shown that the contribution of the (u, v) sector to the partition function
can be written as

Z(u,v)(x, {bk}, {ak}) = qhu,v+h̄u,v eix(αu,v+ᾱu,v)
∏
k∈N

∞∑
m,n=0

Bk
m,nq

k(m+n)Ak
m,n.

(Note that both sectors (u, v) and (u,−v) contribute the same quantity to Z. There seems
therefore to be a freedom to attach (u, v) to either F(u,v) ⊗ F̄(u,v) or F(u,−v) ⊗ F̄(u,−v). This
choice is resolved in the next section.) Using the fact that

〈u, v| (a
m
k ⊗ an

k) (a
m′
−k′ ⊗ an′

−k′)√
km+nk′m′+n′

m!n!m′!n′!
|u, v〉 = δk,k′δm,m′δn,n′
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we obtain

Z(u,v)(x, {bk}, {ak}) = qhu,v+h̄u,v eix(αu,v+ᾱu,v)
∏
k,k′

∑
m,m′,n,n′

Bk
m,nq

k(m+n)Ak′
m′,n′δk,k′δm,m′δn,n′ (28)

= 〈x(u,v)(x1, {bk})|qL0⊕L̄0 |x(u,v)(x2, {ak})〉 (29)

where

|x(u,v)(x2, {ak})〉 = eix2(αu,v+ᾱu,v)
∞∏
k=1

∞∑
m,n=0

Ak
m,n(ak, a−k)

am
−k ⊗ an

−k√
km+nm!n!

|u, v〉. (30)

We have reintroduced, somewhat arbitrarily, the constant term x2 in ϕB2. Again, only the
difference x = x2 − x1 between the constant term x2 in ϕB2 and x1 in ϕB1 has a physical
meaning. We now have an explicit form for the map x.

The vector |x(u,v)(x2, {ak})〉 can be cast into a simpler form. With the help of the following
recursion identities:

(n + 1)L(m−(n+1))
n+1 (x) − [x∂x − x + (m − n)]L(m−n)

n (x) = 0 m − 1 � n � 0

and

L((m+1)−n)
n (x) + [∂x − 1]L(m−n)

n (x) = 0 m � n � 0

we can prove by induction on both indices that

Ak
m,n = (∂− + 1

2a+)
m(∂+ + 1

2a−)n√
m!n!

ea+a−/2 (31)

where, we recall, a± = 2i
√
ka±k and ∂± = ∂

∂a±
. Defining αk = 1

2 i(−∂−k + 2kak), ᾱk =
1
2 i(−∂k + 2ka−k) and -k = Ak

0,0 = ea+a−/2 = e−2k|ak |2 , we obtain

Ak
m,n = αm

k ᾱn
k√

km+nm!n!
-k. (32)

The correspondence a−k ↔ iαk and ā−k ↔ iᾱk induces an isomorphism with a subalgebra of
the Heisenberg algebra since the αks and ᾱks satisfy the commutation rules

[αn, αm] = −nδn+m,0 [ᾱn, ᾱm] = −nδn+m,0

[αn, ᾱm] = 0.

If |αuv〉 ⊗ |ᾱu,v〉 is identified with - = ∏
k -k and α0 (respectively ᾱ0) is defined as acting

by multiplication by αu,v (respectively ᾱu,v), this correspondence can then be extended to an
isomorphism of Heisenberg modules. Since the a−ks and αks, k > 0, all commute with one
another, we are able to write down an exponential form for the boundary state:

|x(u,v)(x2, {ak})〉 = eix2(αu,v+ᾱu,v)
∏
k

{∑
m,n

(αka−k)
m(ᾱk ā−k)

n

m!n!kmkn
-k

}
|u, v〉

= eix2(αu,v+ᾱu,v)
∏
k

{
eαka−k/keᾱk ā−k/k

}
-|u, v〉

= eix2(αu,v+ᾱu,v)
∏
k

{
e(αka−k+ᾱk ā−k)/k

}
-|u, v〉

= eix2(αu,v+ᾱu,v)e
∑

k∈N
(αka−k+ᾱk ā−k)/k-|u, v〉. (33)
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Up to the factor (−iτ)−1/2e−iπτ/12 the partition function takes the following form:

Z(x, {bk}, {ak}) = 〈x(x1, {bk})|qL0+L̄0 |x(x2, {ak})〉 (34)

in which we have defined

|x(x2, {ak})〉 = eix2(a0+ā0)e
∑∞

k=1(αka−k+ᾱk ā−k)/k-|.〉 (35)

|.〉 =
⊕
u,v

|u, v〉 (36)

where the operators a0 = a0 ⊗ 1 and ā0 = 1 ⊗ a0 act as the identity times αu,v and ᾱu,v on
|u, v〉 = |αu,v〉 ⊗ |ᾱu,v〉. The boundary states |x(x2, {ak})〉 belong to the direct sum of Fock
spaces

⊕
u,v F(u,v) ⊗ F̄(u,v) or, more precisely, to the sum

⊕
u,v(F(u,v) ⊗ F̄(u,v))

c of some
completions that contains formal series like (35). In the next section, it will turn out to be
useful to include the x dependence in -, which will then be denoted as -u,v , to highlight its
sector:

-u,v = eix(αu,v+ᾱu,v)-. (37)

Expression (35) can easily be put into a form that appeared in the string theory literature.
Using the fact that, for k � 1,

αk- = 2ikak- and ᾱk- = 2ika−k-

and

ᾱk exp (2iaka−k)- = (2ika−k + a−k) exp (2iaka−k)-

we can write

|x(u,v)(ϕ)〉 = eix(a0+ā0)e
∑

k�1 ᾱk ā−k/ke
∑

k�1 αka−k/k-|u, v〉 (38)

= eix(a0+ā0)e
∑

k�1 ᾱk ā−k/ke
∑

k�1 2iaka−k-|u, v〉 (39)

= eix(a0+ā0)e
∑

k�1(2ika−k+a−k)ā−k/ke
∑

k�1 2iaka−k-|u, v〉 (40)

= eix(a0+ā0)e
∑

k�1(
1
k
a−k ā−k+2ia−k ā−k+2iaka−k−2kaka−k)|u, v〉 (41)

which is the form found in [11]. (It is equation (2.21) of that paper though the phase eix(a0+ā0)

is missing there. As mentioned in the introduction these authors obtained the vector by the
solution of an eigensystem and a phase is therefore not important for them. It will be crucial
to us in the next section. Otherwise the comparison goes as follows. Their Fourier coefficients
xn correspond to our an through the relation xn = −2

√
nan, n � 1, and their generators an are

an = ian/
√
n, a−n = −ia−n/

√
n, n � 1, and similarly for the antiholomorphic sector. The

phase appears in [12].)

5. Conformal transformations and boundary states

Having found an explicit and concise form for the boundary states, we can now study their
properties under conformal transformations. Of course, due to the analogy with the string
theory result and the parametrization invariance there, the result will not come as a surprise.
However, it is enlightening to state the exact requirements in the present context and to perform
the computation with the simple expression (33).
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Let g be an infinitesimal conformal transformation that leaves the boundary unchanged
and G the corresponding element in the Virasoro algebra. The purpose of this section is to
show that the action of g on the boundary condition ϕ and that of G on |x(ϕ)〉 commute:

|x(gϕ)〉 = G|x(ϕ)〉. (42)

We first discuss the actions g and G and the correspondence between them.
One can easily convince oneself that the only infinitesimal conformal transformations that

preserve the centre and radius of a circle in the complex plane are linear combinations of

(lp − l̄−p) p ∈ Z (43)

where the conformal generators lp and l̄p are defined as lp = −zp+1∂z and l̄p = −z̄p+1∂z̄. Note
that the subalgebra ⊕p∈ZC(Lp − L̄−p) ⊂ Vir ⊗ Vir is centreless and the mapping defined by
(lp − l̄−p) → (Lp − L̄−p) of the boundary-preserving conformal transformation into Vir⊗Vir
is an isomorphism. However, the transformations (lp − l̄−p), p �= 0, do not preserve the
reality condition imposed on the boundary functions. The generators (lp + l̄p) and i(lp − l̄p)

do. Both reality and geometry-preserving conditions are therefore satisfied by the infinitesimal
transformations

g
(1)
0 = 1 + iε

{
l0 − l̄0

}
(44)

g(1)
p = 1 + iε

{
(lp + l−p) − (l̄p + l̄−p)

}
p > 0 (45)

and

g(2)
p = 1 + ε

{
(lp − l−p) + (l̄p − l̄−p)

}
p > 0. (46)

We shall show that (42) holds if g(i)
p s are defined as above and the corresponding G(i)

p s are
taken to be

G
(1)
0 = 1 + iε{L0 − L̄0} (47)

G(1)
p = 1 + iε

{
(Lp + L−p) − (L̄p + L̄−p)

}
(48)

and

G(2)
p = 1 + ε

{
(Lp − L−p) + (L̄p − L̄−p)

}
. (49)

Since, for p �= 0, we have

[g(1)
p − 1, g(1)

0 − 1] = −εp(g(2)
p − 1)

the property for the second family of transformations follows directly if it is proven to be true
for the first one. The action of G on the right-hand side of (42) is simply left-multiplication.
On the left-hand side, the action is defined as usual by (gϕ)(z, z̄) = ϕ ◦ g−1(z, z̄). We first
study the case p > 0. For p = 0, the particularity of the Sugawara construction will modify
the analysis. We will end this section by examining this case.

Let us first compute |x(gpϕ)〉 with gp = g(1)
p . Note that, due to the use of the Poisson

summation formula to obtain (17), the constant m in −(a + b) ln q = x + 2πmR is no longer
well defined in the sector (u, v). However, the difference (a−b) still is. Only a−b will appear
in the variation gpϕ. As observed in the previous paragraph, the two contributions Z(u,v) and
Z(u,−v) are equal. It turns out that equation (42) holds when the functions ϕ with a given v are
mapped into the sectors F(u,v) ⊗ F̄(u,v), u ∈ Z. (For the other choice F(u,−v) ⊗ F̄(u,−v), the
actions g and G fail to commute.) The function on the boundary must have the form

ϕ(θ) = x + vRθ +
∑
k>0

(akeikθ + a−ke−ikθ )
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or, equivalently

ϕ(z, z̄) = x + (a ln z + b ln z̄) +
∑
k>0

(akz
k + āk z̄

k)

with z = eiθ and z̄ = e−iθ and the reality condition a−k = āk . A direct calculation gives

gpϕ = x̃ + vRθ +
∑
k>0

(ckeikθ + c̄ke−ikθ )

where

ck = ak + iε
(
(k + p)ak+p + (k − p)ak−p

)
+ εvRδk,p (50)

c̄k = āk − iε
(
(k + p)āk+p + (k − p)āk−p

)
+ εvRδk,p (51)

x̃ = x + iεp(ap − āp). (52)

One can see that the reality condition imposed on ϕ is indeed preserved. Since

|x(u,v)(x̃, {ck})〉 =
(

e
∑

k>0(αka−k+ᾱk ā−k)/k-u,v

)∣∣∣
gpϕ

|u, v〉 (53)

= e
∑

k>0(α̃ka−k+ ˜̄αk ā−k)/k-̃u,v|u, v〉 (54)

where we have defined

α̃k = 1
2 i

(
− ∂

∂c̄k
+ 2kck

)
(55)

˜̄αk = 1
2 i

(
− ∂

∂ck
+ 2kc̄k

)
(56)

-̃u,v = eix̃(αu,v+ᾱu,v)e−2
∑

k>0 kck c̄k (57)

a first step is to express α̃k , ˜̄αk and -̃u,v in terms of x and the aks. This can be easily achieved.
The expressions for ck and c̄k given above can be inverted in order to obtain closed-form
expressions for ak and āk . It is then a simple exercise to show that

α̃k = 1
2 i

(
− ∂

∂c̄k
+ 2kck

)
=

{
αk + iεk(αk+p + αk−p) k �= p

αp + iεp(α2p + αuv) k = p

˜̄αk = 1
2 i

(
− ∂

∂ck
+ 2kc̄k

)
=

{
ᾱk − iεk(ᾱk+p + ᾱk−p) k �= p

ᾱk − iεp(ᾱ2p + ᾱuv) k = p.

Using these expressions, the functional -̃u,v = -u,v

∣∣
gpϕ

can be expressed in terms of the
original variables. A careful treatment of the infinite sums leads to

-̃u,v =
(

1 + iε

(
1
2

∑
0<k<p

(αp−kαk − ᾱp−kᾱk) + αpαu,v − ᾱpᾱu,v

))
-u,v. (58)

One subtlety has to be noted in expanding exp
∑

k(α̃ka−k + ˜̄αk ā−k) to first order in ε. Even
though the a−ks and ā−ks (k � 1) all commute, the transformed α̃k and ˜̄αk may contain αs
with negative indices. If one writes

A =
∑
k�1

1

k
(αka−k + ᾱk ā−k)

B =
∑
k�1

((αk+p + αk−p)a−k − (ᾱk+p + ᾱk−p)ā−k)
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where α0 (ᾱ0) is understood as the multiplication by αuv (ᾱuv), then their commutator is

[A,B] = −
∑

0<k<p

(
a−(p−k)a−k − ā−(p−k)ā−k

)
.

It commutes with the a−ks and ā−ks, k > 0, and the new exponential is simply eA+iεB =
eA(1 + iε(B − 1

2 [A,B])). Finally, we can write |x(u,v)(gpϕ)〉 to first order in ε as

|x(u,v)(gpϕ)〉 = e
∑

k(α̃ka−k+ ˜̄αk ā−k)/k-̃u,v|u, v〉

= e
∑

k(αka−k+ᾱk ā−k)/k

(
1 + iε

( ∑
k>0

(
(αk+p + αk−p)a−k − (ᾱk+p + ᾱk−p)ā−k

)

+αpa0 − ᾱpā0

+ 1
2

∑
0<k<p

(αp−kαk − ᾱp−kᾱk + a−(p−k)a−k − ā−(p−k)ā−k)

))
-u,v|u, v〉

= e
∑

k(αka−k+ᾱk ā−k)/k

(
1 + iε

∑
k�0

(αk+pa−k + αka−k−p − ᾱk+pā−k − ᾱk ā−k−p)

+
iε

2

∑
0<k<p

(αp−kαk − ᾱp−kᾱk + a−(p−k)a−k − ā−(p−k)ā−k)

)
-u,v|u, v〉 (59)

where, for the last equality, we took advantage of α−k-uv = ᾱ−k-uv = 0 if k > 0.
The computation of the right-hand side of (42) is more direct. First write Lp and L−p,

p > 0, as

Lp =
∑
k�0

a−kak+p + 1
2

∑
0<k<p

ap−kak (60)

L−p =
∑
k�0

a−k−pak + 1
2

∑
0<k<p

a−(p−k)a−k (61)

and similarly for L̄p and L̄−p. Second, note that for k � 0

ak|x(u,v)(ϕ)〉 = αk|x(u,v)(ϕ)〉 and āk|x(u,v)(ϕ)〉 = ᾱk|x(u,v)(ϕ)〉. (62)

Then

Gp|x(u,v)(ϕ)〉 = (
1 + iε((Lp + L−p) − (L̄p + L̄−p))

) |x(u,v)(ϕ)〉

= e
∑

k(αka−k+ᾱk ā−k)/k

(
1 + iε

∑
k�0

(αk+pa−k + αka−k−p − ᾱk+pā−k − ᾱk ā−k−p)

+
iε

2

∑
0<k<p

(αp−kαk − ᾱp−kᾱk + a−(p−k)a−k − ā−(p−k)ā−k)

)
-u,v|u, v〉

= |x(u,v)(gpϕ)〉. (63)

We have thus established the desired property for p > 0.
The transformation g

(1)
0 = 1 + iε(l0 − l̄0) is nothing but an infinitesimal rotation. The

Gaussian terms are invariant under these transformations, because Fourier coefficients only
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pick up a phase. Hence -u,v

∣∣
g
(1)
0 ϕ

= (1 + iεvR(αu,v + ᾱu,v)) -u,v

∣∣
ϕ
. The computation of

|x(u,v)(g(1)
0 ϕ)〉 is straightforward and one obtains

|x(u,v)(g(1)
0 ϕ)〉 = e

∑
k(αka−k+ᾱk ā−k)/k

×
(

1 + iε
∑
k>0

(
αka−k − ᾱk ā−k

)
+ iεvR(αu,v + ᾱu,v)

)
-u,v|u, v〉

= e
∑

k(αka−k+ᾱk ā−k)/k

×
(

1 + iε
∑
k>0

(
αka−k − ᾱk ā−k

)
+ iε(hu,v − h̄u,v)

)
-u,v|u, v〉. (64)

The action of G0 is also easy. Using the definition of L0 and L̄0 in (7) and the eigenvalues of
a0 and ā0 in (8), we obtain the desired equality: |x(u,v)(g0ϕ)〉 = G0|x(u,v)(ϕ)〉. This completes
the proof.

6. Dirichlet and Neumann boundary states as superpositions of |x(ϕ)〉

Dirichlet and Neumann boundary states for the free boson are among the simplest conformally
invariant boundary states. Up to an overall factor their expressions are [11, 15]

|D〉 =
∑
u∈Z

eixu/R
∏
k∈N

exp

(
1

k
a−k ā−k

)
|u, 0〉

|N〉 =
∑
v∈Z

e2ixvR
∏
k∈N

exp

(
−1

k
a−k ā−k

)
|0, v〉.

(65)

The sums are not relevant for the discussion of conformal invariance. They will be left
aside in the remaining of the section. (Note that these states are actually one-parameter
families labelled by x.) It is an interesting exercise to express them as superpositions of
the boundary states |x(u,v)({ak})〉. We can solve for both simultaneously by introducing
|Bt 〉 = exp(t

∑
k

1
k
a−k ā−k)|u, v〉 and looking for a function ψt({ak}) such that

|Bt 〉 =
∫

ψt({ak})|x(u,v)({ak})〉
∏
k�1

dak da−k. (66)

The particular values t = +1 and −1 correspond to the desired states |D〉 and |N〉.
Due to the specific form of (30), it is natural to look for ψt of the form ψt({ak}) =∏

k�1 ψ
k
t (ak, a−k). Then (66) simply requires that∫

ψk
t (ak, a−k)A

k
m,n(ak, a−k) dak da−k = δmnt

m for k � 1 and m, n � 0. (67)

By choosing ψk
t to depend only on |ak|, the integral automatically generate a δmn. The problem

reduces to finding a function ψk
t (ak, a−k) = φk(t, xk = 4k|ak|2) that satisfies

π

4k

∫ ∞

0
e−xk/2φk(t, xk)L

(0)
m (xk) dxk = tm (68)

where we have used the explicit form (27) for the Ak
m,n. Because the generating function for

Laguerre polynomials is

f (x, t) =
∞∑

m=0

L(0)
m (x)tm = e−xt/(1−t)

1 − t
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and their orthogonality relation
∫ ∞

0 e−xL(0)
m (x)L(0)

n (x) dx = δmn, the final answer is easily
seen to be

φk(t, xk) = 4k

π
e−xk/2f (xk, t).

The limit of φk(t, x) as t → +1− is not well defined but that of the integrals

lim
t→+1−

∫ ∞

0
f (x, t)A(x) dx

is for any function A(x) in the space of functions spanned by xnebx , for all b ∈ R and n � 0.
The limit of the integrals is then A(0) and corresponds to the Dirichlet conditions ak = 0
for all k �= 0. The limit of φk(t, x) as t → −1 is a constant and corresponds to the free
boundary (Neumann) condition. Note that one also obtains the expansion of the vacuum
(φk(0, xk) = 4k

π
e−xk/2).

Only the values t = ±1 of |Bt 〉 are conformally invariant. The requirement (Lp −
L̄−p)|Bt 〉 = 0 is, for p > 0:

(∏
exp

(
1

k
ta−k ā−k

)) (
(αuvt − ᾱu,v)ā−p + 1

2 (t
2 − 1)

∑
0<k<p

ā−(p−k)ā−k

)
|uv〉 = 0

and is satisfied only for t = ±1. Moreover, if t = +1 (−1), the integer v (u) must vanish in
accordance with the sums in (65). The family |Bt 〉 therefore does not include the family of
conformally invariant boundary states introduced by Callan and Klebanov in [14].

7. Concluding remarks

This simple yet quite instructive calculation gives an example of a conformal theory with
nonconformally invariant boundary conditions. Can the map ϕ → |x(ϕ)〉 for the free boson be
used to investigate minimal models with general boundary conditions? It is well known that
minimal models can be constructed from the c = 1 conformal field theory, using the Coulomb
gas technique. This was done successfully on the plane by Dotsenko and Fateev [5, 6] and on
the torus by Felder [7]. This might be one path to constructing the map for these models.

Langlands and the two authors have recently studied numerically the statistical distribution
of the Fourier coefficients of a field defined for the Ising model [9]. This distribution is more
intricate than the boson’s as the Fourier coefficients of the field at one boundary do not appear
now to be mutually independent. The map ϕ → |x(ϕ)〉, if it exists for the Ising model, might
be a rich object.
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